MongoDB Expands Collaboration with Google Cloud to Help Customers Across Industries Deploy and Scale New Classes of Applications
MongoDB Atlas Search Nodes now generally available on Google Cloud to make it easier and more cost-effective for customers to isolate and scale generative AI workloads
Google Cloud Vertex AI extension for MongoDB Atlas and new Spark integration with BigQuery make it even more seamless for customers to build generative AI applications with their proprietary data
MongoDB Enterprise Advanced on Google Distributed Cloud helps customers run applications that meet the most stringent security and data privacy requirements
"
"Customers continue to tell us they want world-class generative AI support built into the leading tools they already use, such as
Partnered since 2018,
- Seamlessly isolate and scale generative AI applications for high performance and efficiency: MongoDB Atlas Search Nodes—now generally available on Google Cloud—provide dedicated infrastructure for generative AI and relevance-based search workloads that use MongoDB Atlas Vector Search and MongoDB Atlas Search. MongoDB Atlas Search Nodes are independent of core operational database nodes and allow customers to isolate workloads, optimize costs, and reduce query times by up to 60 percent. For example, a financial services company running a high-traffic application during tax season can use dedicated infrastructure with Atlas Search Nodes to optimize performance independent of their database by isolating and scaling the generative AI portion of the workload. The company could then scale a knowledge retrieval workload that uses MongoDB Atlas Vector Search for AI-powered agents that autonomously take action on behalf of end users—without having to resize their entire database.
- Streamline building generative AI applications with leading foundation models: MongoDB Atlas Vector Search has provided an integration with Vertex AI since last year to give developers more choice of managed foundation models to build generative AI applications. Now, with a deepened integration, developers can use a dedicated Vertex AI extension to make it even easier to work with large language models (LLMs)—from Anthropic, Google Cloud, Meta, Mistral, and more—without having to transform data or manage data pipelines between MongoDB Atlas and Google Cloud. This allows developers to more easily augment LLMs with an organization's real-time operational data to build applications that provide context-aware and highly personalized end-user experiences that are more accurate, up to date, and trustworthy—all with less complexity. Developers can also use the new extension to input natural language in the Vertex AI console to automatically generate queries for manipulating data and performing database operations (e.g., create, read, update, delete) on data stored in MongoDB Atlas for a more seamless experience.
- Enhance analytical workloads with automated pipelines for operational data: BigQuery is a serverless, scalable, and cost-effective enterprise data warehouse that works across clouds for analytics, business intelligence (BI), and machine learning workloads. Customers currently use bi-directional sync between BigQuery and MongoDB Atlas to enhance their analytical workloads with real-time operational data or to easily provide end-user applications access to historical enterprise data. With a new integration for Spark stored procedures with BigQuery, customers can better automate, optimize, and reuse data processing workflows between BigQuery and MongoDB Atlas for analytics, BI, and end-user applications. For example, customers can automate pipelines that combine and transform real-time operational data stored in MongoDB Atlas with analytical data in BigQuery and send it to Vertex AI to create new types of end-user application experiences.
- Enrich data from the factory floor with real-time application data to optimize manufacturing and supply chain operations: Tens of thousands of organizations rely on MongoDB Atlas to securely store, process, and manage real-time application data of diverse types with high performance and scale. Manufacturers today want to modernize their operations by combining data from many sources like factory equipment sensors, end-user applications, and enterprise resource planning systems to automate decision-making and run more efficiently. However, many organizations are unable to transform their operations because they still rely on legacy technologies that are difficult to replace and cost-prohibitive to modernize. With a new integration between MongoDB Atlas and Google Cloud Manufacturing Data Engine, manufacturers can more easily combine and transform data from across their organizations to automate processes and optimize operations with modern, real-time applications.
- Easily build and deploy applications that provide modern shopping experiences with composable commerce capabilities: Retail organizations are at the forefront of inventing new customer experiences with personalization and automation. However, building applications that support these types of experiences at scale can be cumbersome and complex. To address these challenges,
MongoDB is joining Google Cloud's Industry Value Network (IVN) partner program, an initiative that streamlines the development of differentiated end-to-end solutions across industries through collaboration with system integrator partners to accelerate innovation. Beginning with a new solution for retailers, customers can now take advantage of MongoDB Atlas on Google Cloud using the Integrated Commerce Network from Kin + Carta, a digital transformation consultancy, to deploy a modern commerce architecture to meet their unique business needs and provide customers with highly engaging shopping experiences. - Run highly sensitive workloads in a tightly controlled and secured environment: Governments, public sector organizations, and enterprises in regulated industries often struggle to modernize their operations because of their data's high sensitivity. As a result, these organizations face limited choices when running workloads. With MongoDB EA on GDC, organizations can now build, deploy, and scale applications in an air-gapped environment without needing to connect to Google Cloud or the public internet.
MongoDB is among the first software providers to offer a validated solution for the new Google Cloud Ready—Distributed Cloud program, a marketplace that provides tailored integrations to support use cases for customers with highly sensitive workloads. GDC enables governments, public sector organizations, and regulated enterprises to address strict data residency and security requirements, and combined with MongoDB EA, these organizations can now modernize all of their operations with the flexibility needed to securely deploy innovative applications and features while protecting sensitive data.
Founded in 2009, Rent the Runway is disrupting the trillion-dollar fashion industry and changing the way women get dressed through the Closet in the Cloud, the world's first and largest shared designer closet. "MongoDB Atlas on Google Cloud is fantastic because it provides the whole set of infrastructure, which we don't have to take care of, so we can focus on our solutions and innovations," said
Kin + Carta, a global digital transformation consultancy, helps companies modernize their business to better address the evolving needs of their customers. "Through the Integrated Commerce Network, we're showcasing the best-in-breed software partners who together make building an end-to-end commerce solution much easier," said
About MongoDB Atlas
MongoDB Atlas is the leading multi-cloud developer data platform that accelerates and simplifies building modern applications with a highly flexible, performant, and globally distributed operational database at its core. By providing an integrated set of data and application services in a unified environment, MongoDB Atlas enables development teams to quickly build with the security, performance, and scale modern applications require. Millions of developers and tens of thousands of customers across industries—including
About
Headquartered in
Forward-looking Statements
This press release includes certain "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, or the Securities Act, and Section 21E of the Securities Exchange Act of 1934, as amended, including statements concerning
MongoDB Public Relations
press@mongodb.com
View original content to download multimedia:https://www.prnewswire.com/news-releases/mongodb-expands-collaboration-with-google-cloud-to-help-customers-across-industries-deploy-and-scale-new-classes-of-applications-302111643.html
SOURCE